一般将铁芯的饱和分成两种情况:稳态饱和、暂态饱和。
稳态饱和主要是因为一次电流值太大,进入了电流互感器饱和区域,导致二次电流不能正确的传变一次电流。稳态饱和多因电流互感器选型不合适或者短路电流过大而引起,不会自行消失。
稳态饱和的谐波分量:以3、5、7次等奇次谐波为主。
暂态饱和主要是因为大量非周期分量的存在,进入了电流互感器饱和区域。暂态饱和多由衰减直流或者电流互感器剩磁引起,在暂态分量逐渐衰减后,饱和逐渐消失。
暂态饱和的谐波分量:除了3、5、7等奇次谐波,还有直流、2次等谐波。
03电流互感器伏安特性
刚刚我们了解了,在电流互感器的铁芯磁通密度达到饱和点后,随着一次电流I1的增大,励磁电流I0显著增加,电流互感器出现大的传变误差。那么该如何确定电流互感器的饱和点呢?

电流互感器伏安特性是指在电流互感器一次侧开路的情况下,在二次侧通电压U,由等值电路图可知此时I0=I2,根据U=4.44f*N*B*S,在N、S、f确定的情况下,U与B成正比,故U与I2的关系曲线描述的是磁通B与励磁电流I0的关系曲线,即电流互感器铁芯的磁化曲线。
根据伏安特性曲线可得出2个结论:
一是得出电流互感器的10%误差曲线。施加于电流互感器二次接线端子上的额定频率的电压,若其有效值增加10%,励磁电流便增加50%,则此电压值称为伏安特性曲线的拐点电压(饱和点)。
二是可以判断电流互感器是否发生匝间短路。拐点电压位置的电流互感器铁芯进入饱和状态,此时励磁电流几乎全部损耗在铁芯发热上,当电流互感器二次绕组匝间短路时,在电流互感器伏安特性上表现为拐点电压U有明显的下降,据此可以判断电流互感器二次绕组异常。
04电流互感器回路接线错误案例分析
2007年8月5日某220kV变电站10kV新生4号线光纤分相电流差动保护动作,开关跳闸,经巡线人员检查、故障点在新联线出口0号杆处保护人员检查两侧保护装置,模拟区内外故障保护均反应正确,如下图所示,试分析跳闸原因。

分析:电厂侧保护人员误将计量电流互感器绕组接入保护回路。正常运行时,新生4号线负荷电流不至于造成电流互感器饱和,不会产生差流,即保护也不会误动作。当新联线10kV出口处发生故障时,故障电流较大造成电厂侧的电流互感器饱和,电流互感器不能正常传变故障电流,进而产生差流,两侧光纤纵差保护动作。同时,因为ISA-353型微机保护比电磁型保护动作速度快,所以10kV新生4号线保护先于10kV新联线跳闸。
